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Metabolic models containing kinetic information can answer

unique questions about cellular metabolism that are useful to

metabolic engineering. Several kinetic modeling frameworks

have recently been developed or improved. In addition,

techniques for systematic identification of model structure,

including regulatory interactions, have been reported. Each

framework has advantages and limitations, which can make it

difficult to choose the most appropriate framework. Common

limitations are data availability and computational time,

especially in large-scale modeling efforts. However, recently

developed experimental techniques, parameter identification

algorithms, as well as model reduction techniques help

alleviate these computational bottlenecks. Opportunities for

additional improvements may come from the rich literature in

catalysis and chemical networks. In all, kinetic models are

positioned to make significant impact in cellular engineering.
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Introduction
Metabolic networks are highly integrated networks that

are regulated in sophisticated ways. Because of this

complexity, strategies for metabolic engineering are often

non-intuitive, and engineering questions are often best

addressed by metabolic models. Constraint-based models

(CBMs), based on stoichiometry, have been widely suc-

cessful over the last 15 years at guiding engineering

efforts without the need for mechanistic detail [1]. How-

ever, CBMs cannot capture the relationship between flux,
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enzyme expression, metabolite levels, and regulation that

is possible with kinetic models (Box 1) [2�]. Although

computationally costly, kinetic models are more predic-

tive and are especially appropriate when there is not an

obvious objective function for optimization or when

exploring dynamic effects [3]. However, within kinetic

modeling, it can be difficult to determine where to start

due to the great wealth of published frameworks. Here we

highlight the questions that are well suited for kinetic

models and the various hurdles to their use.

Questions addressed by recent kinetic
modeling frameworks
Recent kinetic modeling frameworks primarily seek to

answer four types of questions: those involving (1) meta-

bolic state prediction and engineering strategies, (2)

identification of unmodeled phenomena, (3) metabolic

stability, and (4) kinetic variation. The relative strengths

of each framework are shown in Table 1.

Metabolic state prediction and engineering strategies

Most kinetic modeling frameworks are designed to

address questions involving prediction of metabolic states

or rate-limiting steps, as these questions are central to

metabolic engineering efforts. As kinetic parameters of

individual enzymes are rarely known or are uncertain,

many frameworks rely on exploring a range of parameters

and selecting a subset that are consistent with experi-

mental observations. Using the parameters derived from

model training, network kinetics can be analyzed and

predictions made for potential engineering strategies.

The Ensemble Modeling (EM) paradigm is widely used

because it requires minimal data and can accommodate

large uncertainties in kinetic parameters [4]. EM explores

parameters that are thermodynamically consistent with

models that collectively describe dynamic and steady-

state behavior. Because many parameters might be

equally consistent with experimental data, the range of

parameters effectively captures prediction uncertainty (i.

e. a small range means low uncertainty, and a large range

means high uncertainty). ABC-GRASP is similar in con-

cept to EM but uses a wider range of kinetics and uses

probability distributions, rather than discrete parameter

sets [5]. However, these features can add a large compu-

tational cost relative to EM.

The ORACLE framework incorporates Metabolic Con-

trol Analysis (MCA) to succinctly characterize steady-
www.sciencedirect.com
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Box 1 Type of question informs the type of model used

CBMs are more appropriate for some types of questions:

� Flux distribution (during growth): What does the intracellular flux

distribution look like?

� Growth rate: How might the ratio of media components Y1 and Y2

affect growth?

� Knockouts (during growth): Which enzyme(s) should be knocked

out to increase flux through pathway P?

� Maximum theoretical yield (MTY): How does the MTY of product

X change if I change media composition?

Kinetic models are better suited for others:

� State prediction: Which enzyme(s) should I overexpress to

increase production of metabolite X?

� Knockouts (during non-growth): Which enzyme(s) should be

knocked out to increase flux through pathway P during non-growth

conditions?

� Metabolic stability: Will incorporating heterologous pathway P

limit productivity due to metabolic instability? How much can I

overexpress enzyme E without losing stability?

� Regulatory interactions: Is there an allosteric interaction between

enzyme E and metabolite X?
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state behavior and predict rate-limiting steps [6].

Recently, two extensions to the ORACLE framework

were developed that significantly expand its utility.

iSCHRUNK uses machine learning tools on the final

set of kinetic parameters to further reduce uncertainty

[7]. In another work, inverse MCA (IMCA) was integrated

into ORACLE to incorporate the effects of transcriptional

regulation on enzyme expression, which affects steady-

state behavior [8]. However, validating predicted enzyme

expression rate against measured mRNA concentration

changes was challenging, potentially due to the low

correlation between mRNA and enzyme expression

levels [9].

Regulatory structure inference

While kinetic modeling can be used to test the presence/

absenceofstructures in thenetworkandregulation[5,8],only

a small fraction of the possibilities can typically be explored

due to computational limitations. Two notable exceptions

include a method where dynamic metabolite data were used

to systematically test a large set of putative allosteric inter-

actions [10] and another method where Michaelis–Menten

rate laws with variable allosteric terms were fit to an -omics

dataset on a reaction-by-reaction basis [11].
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Recently, however, numerous untargeted experimental

strategies which do not require kinetic modeling have

also been developed [12��,13,14�]. For example, LiP-

SMap detects allosteric interactions by analyzing the

difference in the protease cleavage sites of proteins

when bound to a given metabolite [12��]. Another study

used high-throughput metabolomics data from a single-

gene knockout library to infer gene-metabolite relation-

ships [13]. Finally, a library of fluorescent transcriptional

reporters was used to quantify the activity of metabolic

promoters in Escherichia coli, and their activity was cor-

related with metabolome response to identify metabo-

lites involved in transcriptional regulation [14�]. These

experimental methods can be used to identify regulatory

mechanisms that can be incorporated into kinetic

models.

Metabolic stability

Metabolic pathways are stabilized during evolution, so

cells are typically robust to perturbations to native

enzyme concentrations. However, the addition of heter-

ologous pathways may not result in similar steady-state

stability. While frameworks predicting metabolic states

can assess steady-state stability indirectly, Ensemble

Modeling for Robustness Analysis (EMRA) directly cal-

culates the likelihood of a perturbation causing metabolic

instability [15]. Recently, EMRA was used to assess the

stability of cell-free systems, which are not optimized via

evolution [16]. EMRA was also used to show how incor-

poration of kinetics and stability constraints further con-

strains the Maximum Theoretical Yield as predicted by

FBA [17�].

Kinetic variation

While there is variability in the metabolome and prote-

ome among cell strains, it is thought that variation in the

kinetome – the space of kinetic rate constants in metab-

olism – correlates better with genetic variation [18]. The

MASS (Mass Action Stoichiometric Simulation) frame-

work can perform large-scale analysis of kinetic variation

[19]. Because MASS assumes mass action kinetics (e.g.

Rate = k1[A][B]), a population of thermodynamically con-

sistent rate constant sets can be efficiently computed and

studied. While mass action kinetics is an oversimplifica-

tion of many metabolic reactions, comparison of the fitted

rate constants can reveal loci of important variation

between systems, for example, in red blood cells from

different patients [18] as well as metabolic response to

specific drugs [20].

Hurdles to large-scale quantitative
predictions
While kinetic models can address complex biological

questions, data limitations can result in large uncertain-

ties in predictions, and large models can result in compu-

tational intractability. Here, we discuss these hurdles,

focusing on recent developments to overcome them.
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Challenges in experimental measurements used to train

kinetic models

The most important type of data for kinetic models is

structure. At a minimum, structure includes all reac-

tions relevant to the system but may also include

regulatory interactions and cell growth. While most

reaction networks are well-defined, promiscuous

enzyme activity and heterologous pathways can have

unforeseen effects. Tools such as BNICE [21], Pickaxe

[22], Retropath2.0 [23], and novoStoic [24] can eluci-

date these reactions through comparison to known

reaction chemistry [25].

Because kinetic models ultimately depict system prop-

erties as a function of kinetic parameters, there have

been several efforts in constructing ‘bottom-up’ models

of metabolism where one uses directly measured or

predicted kinetic properties of enzymes in model param-

eterization. While much progress has been made, using

in vitro enzyme properties can cause unrealistic model

behavior without the manual curation of regulatory

effects [26,27]. Recent efforts [28] have shown that

Michaelis–Menten rate law approximations using

kinetic data can replace detailed rate laws; however,

as enzyme kinetic information remains sparse, this

approach is only valid for a small number of well-char-

acterized reactions.

More commonly, -omics measurements are used to train

kinetic models. However, different kinetic modeling

frameworks utilize different types of -omics data to vary-

ing degrees (Figure 1); therefore, data types readily

available for a given project should be taken into consid-

eration when deciding on a kinetic modeling framework.

Flux data are arguably the most difficult to obtain.

Nevertheless, fluxes are generally the most important

property to measure, as most frameworks, including

ORACLE, EM, ABC-GRASP, and MASS, require an

accurate intracellular reference flux distribution. 13C

tracer studies elucidate aspects of intracellular metabo-

lism, while uptake and secretion fluxes are obtained by

measuring changes in extracellular metabolite

concentrations.

Measurements of intracellular metabolomics are also

useful for parameter inference, but they are difficult to

obtain. Metabolomics can refer to either relative or abso-

lute concentrations of metabolites. While relative mea-

surements – which do not require internal standards and

are higher throughput – can typically be incorporated in

rate laws, absolute metabolomics are required to accu-

rately implement thermodynamic constraints [29]. Reac-

tion thermodynamics strongly control fluxes for most

reversible reactions and thus help to ensure feasibility

in kinetic models [11]. For a thorough review of meta-

bolomics methods, see Ref. [30].
www.sciencedirect.com
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Different data types have varying value to kinetic modeling frameworks.

-omics types are required to varying levels by different model frameworks (darkest boxes indicate data type is required, less dark boxes indicate

data type is used to a high degree in practice, lighter blue boxes indicate data type can be used, light gray boxes indicate data type is not used)

[4,5,6,15,19,57��]. While all the -omics data types shown have utility in kinetic modeling, modeling results are usually most sensitive to variation in

those near the bottom (e.g. variation in network structure). Thus, those data types generally provide more utility to kinetic modeling efforts and

should be prioritized. Note that while regulatory reactions provide much value to kinetic modeling, they are not always incorporated, either

because they are unknown or because they cannot be incorporated easily using a given framework. Data-driven models, while requiring very large

amounts of data, may not require knowledge of the reaction network or regulatory interactions at all [57��].
ABC-GRASP, Approximate Bayesian Computation – General Reaction Assembly and Sampling Platform; EM, Ensemble Modeling; EMRA,

Ensemble Modeling for Robustness Analysis; ER-MA, Elementary Reaction Mass Action; LMA, Law of Mass Action; MASS, Mass Action

Stoichiometric Simulation; MWC, Monod-Wyman-Changeux; ORACLE, Optimization and Risk Analysis of Complex Living Entities.
Proteomics, while a low-throughput measurement, can be

directly incorporated into most kinetic modeling frame-

works. This is especially true in the case of highly

irreversible reactions in which fluxes are often sensitive
www.sciencedirect.com 
to enzyme concentration [11]. Relative proteomics are

currently higher throughput than absolute measure-

ments, although label-free absolute proteomics methods

have made recent advances [31].
Current Opinion in Biotechnology 2019, 59:24–30
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Parameter identifiability

Usually, experimental datasets measure too few condi-

tions or not enough fluxes/metabolites/proteins at a given

condition to resolve all parts of a network, that is, those

parameters lack identifiability with the data provided.

Methods for determining parameter and structural iden-

tifiability are complex and previously reviewed [32].

However, model solutions containing many feasible

model parameterizations, including aspects of the net-

work that are non-identifiable, are typically sufficient to

answer design hypotheses, even if individual members of

the solution contain loosely fit parameters [33]. We espe-

cially want to highlight recent modeling efforts that result

in a distribution of parameters, rather than just one

optimal set, and provide impactful insight into system

behavior despite lacking a sufficient amount of data for

direct parameter identification [15,16,34,35]. In general,

kinetic models are best positioned to identify overall

changes in system behavior rather than individual param-

eter values, as different sets of kinetic parameters can give

rise to the same overall behavior.

Most kinetic models are written as large systems of stiff

ordinary differential equations (ODEs) that are compu-

tationally expensive to solve. However, optimization tools

such as Markov Chain Monte Carlo (MCMC) [36],

genetic [37], and particle swarm [38,39] algorithms can

decrease computational burden. For example, a paralle-

lizable scatter search method was developed [38]. This

method initiates multiple threads of a search algorithm,

and the combination of these results is then communi-

cated between parallel threads to better search the solu-

tion space. Additionally, a genetic algorithm (GA) step

was added to the traditional EM framework to identify a

single parameter set rather than an ensemble [37]. How-

ever, the lack of an ensemble makes it challenging to

gauge uncertainty as there is no dispersion in one model,

so several GA searches should be deployed in parallel.

Furthermore, while the GA step more efficiently searches

the parameter space, it often results in lower overall

computational efficiency due to parameter tuning and

overhead costs. Thus, these tools may not always reduce

computational burden. However, other techniques that

reduce the parameter sampling space directly by, for

example, imposing reference flux states, reaction thermo-

dynamic limits, and local stability constraints often

reduce computational burden [4,16,29,34,40,41�]. While

these strategies efficiently search and constrain the

kinetic parameter space, directly reducing the number

of kinetic parameters can also improve computational

tractability.

Model reduction

The goal of model reduction is to reduce the number of

kinetic parameters while maintaining predictive power.

Although reduction techniques are often applied after

parameter estimation [42–45], here we highlight a priori
Current Opinion in Biotechnology 2019, 59:24–30 
model reduction methods applicable to most kinetic

modeling efforts.

1 Model scope — selecting the appropriate amount of

detail to include before using post-parameter estima-

tion reduction techniques [42–45] is an ill-defined

process. Too much detail leads to an impractical

amount of time spent on model reduction (due to large

computational costs), while too little detail may not

capture observed effects at all.

2 Rate expression — the type of rate expression deter-

mines the number of parameters required. Approxi-

mate rate laws, such as lin-log kinetics, are model-

reducing as they use fewer kinetic parameters [46].

However, they typically invoke assumptions whose

validity should be checked [2�,47]. This natural

trade-off should be considered during initial model

development [28,48].

3 Conservation analysis — biological networks inher-

ently contain conserved moieties, such as the total pool

of ATP, ADP, and AMP. These conserved groups are

considered independent variables in many kinetic

modeling approaches and increase the stiffness of

ODE systems, increasing solve time. Because it is

difficult to manually identify all conserved moieties,

a tool that performs conservation analysis on biological

networks was developed [49]. We have found that

using this method decreases computation time.

4 Lumping — lumping techniques, such as a condensing

a linear pathway into a single reaction, can greatly

shrink the parameter space [50,51]. Often, optimization

methods are used to identify potential lumping

schemes throughout the network [26,52].

Use of appropriate model reduction techniques can

greatly reduce the resources required to interrogate

large-scale biological networks [43]. Conservation analy-

sis, in particular, is easy to implement [49] and would

provide value to most kinetic modeling efforts.

Conclusions
While we have reviewed the types of questions addressed

by recent kinetic modeling frameworks, comparative

studies need to be done in order to further characterize

similar kinetic frameworks, similar to comparisons done

for CBM frameworks [53]. In addition, it is important to

survey modeling efforts in other fields, such as heteroge-

neous catalysis [54–56], and especially efforts that take

advantage of the increasing availability of -omics data,

particularly fluxomics, intracellular metabolomics, and

proteomics [57��]. Improving parameter estimation and

model reduction techniques will allow tractable simula-

tions for large-scale kinetic models while the discussed

structural inference techniques can best inform model

structure. As metabolic networks are large, complicated,

and highly-coupled, sophisticated modeling frameworks

will be essential in predicting system-level behavior.
www.sciencedirect.com
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